嵌入式设计入门:三极管基础电路设计

分享到:

在嵌入式电路中,三极管一般作为开关器件和功率器件使用,下面就从这两个方面讲解嵌入式中三极管基础电路的设计。

  开关器件

  在嵌入式电路中经常使用IO口来控制某些电路的开关功能,此时三极管可作为开关器件来使用。作为开关器件使用时需使用开关三极管如9014和9015等小功率器件,此时三极管处于饱和状态。现举一例来说明该类电路特点:

11

  为仿真电路图不是很完整,该电路为晶振关闭功能电路,其中VO接MCU晶振输入端如(XIN)。

  若Q1和Q3基极同时为低时,Q2导通而使得VO为0造成晶振停振关闭处理器。我们分析R3和R4(实际电路470K)使得Q2和Q3处于饱和态;Q3为Q1集电极负载,调整R5阻值时可控制Q1处于饱和态或放大态。要使Q2基极导通必须使Q1提供足够大电流才满足条件,只有Q1处于放大态才满足条件;

  R5=100K时,仿真图如下:

12

  R5=470K时,仿真图如下:

13

  通过以上分析可以得出只有当电流足够大时才能使Q2导通而关闭晶振,以上是一个较复杂的组合开关电路。

 功率器件

  在嵌入式电路设计中,很少使用到功率放大电路,昨天将大学模电教材晶体管内容通读后有所感悟,虽然当时模电自认为学的不错但重读之后才发现当时只是死记硬背而没有真正领悟。

  静态工作点不但决定是否会失真,而且还影响电压放大倍数、输入电阻等动态参数。然而在实际电路中由于环境温度的变化而使得静态工作点补稳定,从而使得动态参数不稳定,更严重可能造成电路不能正常工作;在所有环境因素中,温度对动态参数的影响是最大的。

  当温度升高时,晶体管放大倍数变大且ICE明显变大。以共射极电路为例,当温度升高时将使Q点向饱和区域移动;当温度降低时将使Q点向截止区域移动。

  下图是典型的静态工作点电路

14

  图AB均有相同的等效直流电路。为了稳定Q工作点,通常要满足I1>>IBQ而使得

  VBQ =Rb1*VCC/ Rb2+ Rb1

  通过这样设计使得无论环境温度怎么变化,VBQ将基本保持不变。

  当温度升高时ICE变大,而使得VEQ变大,因VBE=VBQ– VEQ所以VBE将变小;由于VBE变小故IBE也将变小,从而ICE将变小。

  RE的使用将直流负反馈引入使得Q工作点越稳定,一般而言是反馈越强,Q点越稳定。

  其他稳定Q工作点电路

15

  以上为利用二极管方向特性和正向特性进行温度补偿的电路。

  对图A而言,因为IRB=ID+IBE,当温度上升时ICE和ID变大(方向电流随温度升高变大),这样将使得IBE减小而造成ICE减小。

 

 

更多Atmel及科技资讯请关注:  
Atmel中文官网:http://www.atmel.com/zh/cn/
Atmel技术论坛:http://atmel.eefocus.com/
Atmel中文博客:http://blog.sina.com.cn/u/2253031744
Atmel新浪微博:http://www.weibo.com/atmelcn

继续阅读
经验之谈:工程师于电路设计中的八大误区

我们常常会发现,自己想当然的一些规则或道理往往会存在一些差错。电子工程师在电路设计中也会有这样的例子。下面是一位工程师总结的八大误区点。

6种实用的电路设计方案

电路来源于日常工作常用的一些基础电路,原理是新手或菜鸟比较容易疑惑的基础概念,经验是自己日常调试中积累的一点所得。希望对新手有所帮助。

自动判别三极管管脚电路设计

在电子技术中,三极管是使用极其普遍的一种元器件,三级管的参数与许多电参量的测量方案、测量结果都有十分密切的关系,因此,在电子设计中,三极管的管脚、类型的判断和测量非常重要。测量三极管管脚的方法有多种,其中实验室常用的是利用万用表和三极管各管脚的特点进行测量,但由于三极管各个引脚间的电压、电流关系复杂,且三极管本身体积较小,给测量带来很大不便,而目前市场上还没有对三极管管脚、类型自动判别的装置。因此,设计出一款能够自动判别三极管管脚、类型的电路显得尤为重要。

©2017 Microchip Corporation
facebook google plus twitter linkedin youku weibo rss