基于Atmel QTouch的ATmega48感应按键设计

分享到:

 感应按键技术,作为一项新兴的技术,已经广泛用于各种产品。尤其是近两年以来,采用感应按键的家电产品呈爆发式增加。目前,市面上的这类产品主要有智能电冰箱、数字液晶电视、热水器、电热炉等家电产品。采用感应式按键的家电产品,可以设计出靓丽的控制面板,同时,与机械式按键相比具有更长的使用寿命。

  目前,感应按键的应用方式主要有两大类:

  ①采用专用芯片,比如Quantum(昆腾)公司的感应按键芯片QT240、QT1101,以及Chemtronics(康拓斯)公司的CT1008等。这类芯片内部固化了处理感应按键的软件,能够对按键感应电极(金属弹簧或导电海绵)的信号进行采集和分析,最终将分析的结果以高低电平形式输出到应用系统的处理器I/O口。比如,当手靠近感应电极的时候输出高电平,远离感应电极的时候输出低电平。这类芯片外围需要少量的分立器件,实际使用时要根据应用场合对这些外围器件的参数进行微调,以达到最佳效果。

  ②采用集成式芯片。推出这种方式的芯片厂家将处理感应按键的软件部分嵌入到单片机程序中,用户如果需要用到感应按键,只需要在单片机开发环境里将需要的I/O口配置为感应按键的输入口,同时系统通过调用芯片厂家提供的函数库接口来读取感应按键的结果。基于Atmel公司ATmega系列单片机的感应按键就是属于这种应用方式,它是将其QTouch技术的软件代码以库函数接口形式提供给用户使用。

  2 QTouch技术

  QTouch技术是Atmel公司触摸技术部前身Quantum开发的一项技术。所开发的集成电路技术是基于电荷的传输电容式感测。QTouch IC检测用传感器芯片和简单按键电极之间连接来检测触摸,如图1所示。QTouch器件对未知电容的感测电极充电到已知电位。电极通常是印刷电路板上的一块铜区域,该电极可以通过金属弹簧或者导电海绵来延伸应用空问。在1个或多个电荷传输周期后测量电荷,就可以确定感测板的电容。在触摸表面按手指,导致在该点影响电荷流的外部电容,作为一个触摸记录;也可确定QTouch微控制器来检测手指的接近度,而不是绝对触摸。判断逻辑中的信号处理使QTouch健全和可靠,同时可以消除静电脉冲或瞬时无意识触摸/接近引起的假触发。

QTouch传感器可以驱动单按键或多按键。在用多按键时,可以为每个按键设置一个单独的灵敏电平。可以用不同大小和形状的按键来满足功能和审美要求。QTouch技术可以采用两种模式:正常或“触摸”模式,以及高灵敏度或“接近”模式。用高灵敏电荷传输接近感测来检测末端用户接近的手指,用用户接口中断电子设备或电气装置来启动系统功能。为了实现良好的电磁兼容,QTouch传感器采用扩频调制和稀疏、随机充电脉冲(脉冲之间具有长延迟)。单个脉冲可以比内部串脉冲间隔短5%或更短。这种方法的优点是交叉传感器干扰较小,功耗较低,且降低了RF辐射和极化率。QTouch器件对于慢变化(由于老化或环境条件改变)具有自动漂移补偿。这些器件不需要线圈、振荡器、RF元件、专门缆线、RC网络或大量的分立元件。

  3 硬件设计

  基于ATmega48的感应按键,在硬件设计上非常简单,每路按键只需要一个电阻和一个电容即可实现。通常情况下,感应电极一般以铜箔形式分布在印刷电路板上,可以根据具体的应用需要将感应电极设计成不同的尺寸和形状。同时,采用金属弹簧或者导电海绵等具有导电功能的介质,能够将按键延伸到合适的长度或高度,如图2所示。

典型应用情况下,采样电容C1或C2采用22 nF,限流电阻R1或R2采用1 kΩ。但是实际应用系统中需要根据感应按键的灵敏度,对采样电容的容值和限流电阻的阻值进行调整,以达到最佳效果。硬件原理图如图3所示。

 

  4 函数库安装与软件配置

  要把ATmega48单片机的I/O口作为感应按键输入口来使用,首先需要安装QTouch函数库Atmel_QTouch_Libraries,目前比较新的函数库版本是4.3。安装完毕后,需要将与单片机对应的库文件加载到工程中。Atmel公司的集成开发环境AVR Studio提供了便捷的设置,新建一个工程后,可在Project→Configuration()ptions→Libraries界面中添加函数库链接文件。

  其次,需要对I/O口进行配置。在工程配置(Project→Configuration()ptions→Custom()ptions)界面设置相应的宏定义参数即可,如图4所示。

-D_QTOUCH_:需要使用QTouch函数库。

  -DSNSK=C和-DSNS=C:表示将ATmega48 PC口设置为感应按键口。

  -DQT_NUM_CHANNELS=4:表示最大可用通道数量。

  -DQT_DELAY_CYCLES=1:表示采样电容充放电周期时间。

  另外,在应用系统源程序中需要加入库函数的头文件。代码如下:

  #include“touch api.h”

  5 系统应用

  应用流程如图5所示。在系统初始化之后,首先调用config_sensors()函数将需要的I/O口配置成感应按键的采样口,并对各个感应按键的各个状态进行初始化。然后是设置感应参数,这些参数包括按键校准阈值、正向漂移值、负向漂移值、最大连续感应时间等。最后,在应用系统的主程序中,需要周期地调用库函数qt_measuer_channels()对感应信号进行测量,并检测按键的状态。

需要注意的是,感应按键采集使用了系统的一个定时器中断,因此,应用系统中的中断程序会对其造成一定的影响。这就要求在按键感应的过程中,应用系统的中断服务程序的处理时间越短越好。在电容感应工作的时候,中断服务程序处理时间不应该超过1 ms,否则将严重影响感应按键的灵敏度,甚至会导致感应按键失灵。

  应用系统程序如下:


  结语

  基于Atmel QTouch技术的嵌入式感应按键设计,简化了设计难度,降低了系统的应用成本,节省了印刷电路板的尺寸空间,系统应用稳定,可灵活应用于各类电子产品中。

继续阅读
SAMD11学习:EDBG/mEDBG对比+Qtouch测试

因为手上有D10的Xplain mini的板子,就从官网上下载了这块板子的资料下来,与D11 Xplain Pro对比后才知道,原来Atmel的EDBG电路是有多个版本的,至少在这两块板子上的EDBG是不一样的。D11 Xplain Pro的版本显示为EDBG,而D10 Xplain mini上的版本则显示为mEDBG。

Atmel 将 QTouch 安全平台扩展到家用电器用户界面

最新发布的 QTouch 电容式触控平台以 Atmel | SMART SAM D20 为基础,整合了一个片上外设触摸控制器(PTC)使其具有强大的电磁兼容抗扰性能和较短的响应时间,同时将自电容和互电容传感器结合在一起,最高可达256个通道。现在 QTouch 平台已经为全球众多的领先制造商所采用。

Atmel拓展面向家电用户界面的QTouch安全平台

最新推出的QTouch电容触控平台基于Atmel | SMART SAM D20,内置一个片上外设触摸控制器(PTC),可实现卓越的EMC性能和极短的响应时间,并整合了自电容和互电容传感器,提供多达256条通道。QTouch平台已被全球众多领先的家用电器制造商广泛采用。

摸电脑就能破解密码?目前不足为惧

数据安全一直受广大PC用户的关注,用户很担心的就是密码被盗。以往盗取密码可能需要数据线连接,但以色列大学Tel Aviv的研究称,黑客只需要用手摸电脑就能够盗取电脑信息。 很耸人听闻吧?技术上确实能够达到这个效果,但实际上用处不大。“魔术”的秘诀在于许多电脑、笔电里的接地电压会根据计算模块的运作而波动。所以当盗取密码的程序在运作的时候,黑客可以根据这个电流分析计算机数据。 黑客需要在一只手上绑上电极,并接上电压传感器,另一只手摸电脑的金属部件(同一只手也可

未来汽车这样?Atmel展示触控芯片解决方案

7月25日,Atmel在北京举行了媒体体验会,今年CES上亮相过的Atmel汽车中控台概念设计被介绍进了中国。据厂商介绍,这个demo展示了2018年以后的汽车中控可能的样子,很炫酷。

©2019 Microchip Corporation
facebook google plus twitter linkedin youku weibo rss